
ECE276C Final Project Report
1st Yuchen Zhang

University of California San Diego
La Jolla, USA

yuz008@ucsd.edu

Abstract—The selection of lower-level controllers are non-
trivial and task dependent. this paper proposed a network
architecture that learns to combine multiple low-level controllers.
Results shown better performance than traditional hybrid con-
troller but worse than the MPC implementation on the velocity
tracking task.

Index Terms—hierarchical control, quadruped, locomotion

I. INTRODUCTION

Currently, high level policy learned via reinforcement learn-
ing interface with robot hardware via commands for low
level controllers. The low level controllers can either be pre-
determined, model-based procedures as [3], trained low-level
policy as [4] and various hierarchical learning algorithms [6]
, or an high level policy that switches between traditional
controllers and learned policies. [5]

The additional level of controllers between hardware and
high level policy in the above structures can be seen as
modification of hardware interfaces for the high level policy.
For example, inverse kinematics controller can transform the
highly non-linear relationship between joint position and foot
position to a affine transform. This modification may decouple
the hardware interface for high-level controllers, reducing the
complexity of training. This selection of appropriate low-level
controllers, however, is non-trivial and depends on the specific
task. As a center velocity controller may be well suited for
navigation through a maze, it leaves no space for optimizing
gaits in a energy-constraint task.

I propose a network architecture that learns to combine
various low-level interfaces. Different from hard switching as
[5], the network I proposed combines controller outputs of the
same kind with weights from the shared network. This soft
switching allows controllers to function as residue actions.

II. METHODS

My architecture requires controllers to be able to output
torque command, or their command can be converted to torque
command (for example, a target position command can be
converted to torque command via a PID controller).

The shared network will compute a action a1, ..., aN for
different controllers. the dimension of the shared network
output depends on the controllers’ input. Next, the output of
controllers of the same physical quantity is added with weights
from the network. Then, this physical quantity is converted to
torque command via a converter as required for controllers.
Finally, the torques are weighted and summed.

See figure 1 for a diagram of the proposed architecture.

SharedObservation

→ w

a1

...

aN

Controller 1

...

Controller N

output type: A

output type: A

wA

A

to
torque

...

Σ

wτ

τ

Fig. 1. Diagram of proposed architecture

III. EXPERIMENT SETTING

A. Architecture

For the experiment I have 3 controllers - joint torque
controller, joint position controller, and a inverse kinematics
controller. Both joint position and IK controller outputs R12

joint position command, they are first summed together with
weights. Then, this weighted average position command is
converted to torque via a PD controller. Finally, the torque
output from the PD controller is summed with the output of
joint torque controller according to pos-torque weight from
the network to produce the final torque command.

The network is a MLP with inner layer size [256, 128, 64]
and elu as activation function. The input to the shared network
are:

TABLE I
NETWORK INPUT

parameter Dimension
base linear velocity 3

base angular velocity 3
projected gravity 3

velocity commands 3
joint position history 12× 4

joint velocity 12
foot contact force 4× 3

B. Joint Position Controller

The joint position controller is a PD controller with Kp =
55N · m/rad and Kd = 2.0N · m/(rad/s).

C. Inverse Kinematics Controller

I created a inverse kinematics controller that takes in R12

input target foot positions and output R12 target joint angles.
I modified inverse kinematics formula according to [1] to



make it work for the simulated A1 robot, which have different
coordinate system at the left half of the robot as the paper’s.

Let the robot leg length be l0, l1, l2, from body to foot. Let
the joint angles be θ0, θ1, θ2. Let the target foot position be
p⃗ = [x, y, z]T . The target joint angle is computed by:

D =
x2 + y2 + z2 − l20 − l21 − l22

2l1l2

θ2 = −atan2(−
√
1−D2, D)

θ1 = atan2(z,
√

x2 + y2 − l20)− atan2(l2 sin(θ2), l1 + l2 cos(θ2))

θ0 =

{
−atan2(−y, x)− atan2(

√
x2 + y2 − l20,−l1) left

−atan2(−y, x)− atan2(
√
x2 + y2 − l20, l1) right

The above inverse kinematics algorithm have solution only
if the square roots produce real results. The two square roots
operations require the following:{

∥⃗l∥2 − 2l1l2 ≤ ∥p⃗∥2 ≤ ∥⃗l∥2 + 2l1l2

x2 + y2 ≥ l20

In which ∥⃗l∥2 = l20+l21+l22. I added the following remapping
of the target position to guarantee a valid solution for any input
position:xclip

yclip
zclip

 =

 x
max(y, l0)

z


x⃗norm =

x⃗clip ∥x⃗clip∥ ≤ ∥⃗l∥

x⃗clip ·
√

∥⃗l∥2+2l1l2
∥x⃗clip∥ ∥x⃗clip∥2 > ∥⃗l∥2 + 2l1l2

Finally, a affine mapping is used to transform normalized
action output from network ([−1, 1]) to target position speci-
fied below.

TABLE II
A1 INVERSE KINEMATICS PARAMETERS

parameter symbol value (m)
hip length l0 0.08505

thigh length l1 0.2
calf length l2 0.2

x range [xmin, xmax] [−0.3, 0.3]
y range [ymin, ymax] [0.15, 0.35]
z range [zmin, zmax] [−0.3, 0.3]

D. Environment
I used the IssacGym simulator [7] for efficient paralleliza-

tion.
1) velocity command tracking: The reward function is

computed as follows:

r = αxy exp

(
− (vx − vx,cmd)

2 + (vy − vy,cmd)
2

exp coeff

)
+ αω exp

(
− (ωz − ωz,cmd)

2

exp coeff

)
− αzv

2
z − ατ

12∑
i=0

τ2i

In which the velocities are transformed to body frame via
rotation and the coefficients are: exp coeff = 0.4, αxy = 2.0,
αω = 1.0, αz = 0.02, and ατ = 0.000025.

The target velocity command is sampled from a uniform
distribution of:

vx,cmd ∼ U(0.3, 1.6)
vy,cmd ∼ U(−0.5, 0.5)

ωz,cmd ∼ U(−0.5, 0.5)

The following terrains are constructed with the same obser-
vation and reward functions as described above.

a) Flat Plane Terrain: The ground is a flat plane with
static friction coefficient and dynamic friction coefficient of
10.0 and restitution of 0.0.

b) Uneven Plane Terrain: The ground is a mesh that
have uniformly distributed height z ∈ [−0.05, 0.05] for grid
points separated by 0.2m and a plane at z = 0. The mesh is
sufficiently large to contain the robots during episodes. Figure
2 shows a screenshot of the terrain. Collisions between agents
are disabled.

Fig. 2. uneven plane terrain

2) Dash: The reward function is computed as follows:

r′ = αxy max(0, vx)− αωω
2
z − αzv

2
z − ατ

12∑
i=0

τ2i

r = max(0, r′)

The clip added to the reward is used to guide the policy not
to intentionally terminate during early stages of training.

The dash task have only one terrain:
a) Flat Plane Terrain: The ground is a flat plane with

static friction coefficient and dynamic friction coefficient of
10.0 and restitution of 0.0.

E. Training

Policies are trained using PPO provided by the IssacGy-
mEnvs framework [9]. The training is parallelized with 256
agents and trained for 2000 epochs.



IV. RESULTS

A. Weights Analysis
The weights between joint-position / inverse kinematics and

combined position / torque is collected during training. The
weight is the mean of weights of 256 actors at every 100 time
steps.

Fig. 3. weights between position commands and inverse kinematics

According to figure 3, policies that are trained for velocity
tracking command have similar weights for joint position and
inverse kinematics. Policy for dash task have more weights
on joint position command, potentially due to the position
command can actuate the robot limbs to a wider range.

Fig. 4. weights between position commands and torque command

Figure 4 show that policies trained for target velocity
tracking have a torque command weight close to 0 relying
almost entirely on position commands, while the policy trained
for dash task maintained a non-trivial torque weight. This fits
the intuition that a dash gait need to access to lower level
controllers to fine tune its details.

Fig. 5. weights of torque command concentrates at ground contact

A closer analysis of the dash policy shows the weight of
the torque command is concentrated when the robot’s foot
contacts the ground. Figure 5 shows the torque weight and
ground contact information for a single agent during testing.

Ablation study of the torque command weight is conducted.
For comparison, the torque output is set to zero and the weight
for combined position command is set to 1.0.

Fig. 6. removal of torque command

Removal of the torque command yields lower velocity in
the dash environment and shortened air time. This shows the
contribution of torque output is non-trivial.

B. Comparison to baseline

The baseline I choose is the MPC from google [10] and
hybrid control - network only output joint position and joint
torque actions, summing them at full weight.

I retrieved the MPC implementation from the motion imi-
tation repository from Google research [11] and implemented
the reward function and terrain at their codebase.

TABLE III
VELOCITY TRACKING TASK

Terrain proposed hybrid MPC
Flat 55.53 39.58 64.36

Uneven 44.51 24.13 62.63

TABLE IV
DASH TASK

Terrain proposed hybrid
Flat 80.9 35.65



V. DISCUSSIONS

According to results section, the proposed architecture per-
forms worse compared to the MPC baseline, and performs
better compared to traditional hybrid controller that does not
using weights and inverse kinematics.

According to weights analysis, the proposed architecture
is able to select controllers based on task requirements and
performed better compared to hybrid controllers (joint position
and torque). Future research on this technique is needed.

There are limitations of this architecture. Firstly, adding
more potentially helpful low level controller will enlarge the
action space, which will cause the network harder to train.
The balance between more controllers and network size should
be investigated. Secondly, all controllers is connected to the
same depth of the high-level network in this work. However,
different controllers represent different levels of complexity
handled by it for the network, and should require different
depth of network.

ACKNOWLEDGMENT

The codebase is based from work of my peer Minghao
Zhang, a group member at professor Xiaolong Wang’s lab.

REFERENCES

[1] Şen, Muhammed Arif & Bakırcıoğlu, Veli & Kalyoncu, Mete. (2017).
Inverse Kinematic Analysis Of A Quadruped Robot. International Jour-
nal of Scientific & Technology Research. 6.

[2] V. Makoviychuk et al., “Isaac Gym: High Performance GPU-Based
Physics Simulation For Robot Learning,” CoRR, vol. abs/2108.10470,
2021, [Online]. Available: https://arxiv.org/abs/2108.10470

[3] X. Zhang, X. Guo, Y. Fang and W. Zhu, ”Reinforcement Learning-
based Hierarchical Control for Path Following of a Salamander-
like Robot,” 2020 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), 2020, pp. 6077-6083, doi:
10.1109/IROS45743.2020.9341656.

[4] Jain, D., Iscen, A., & Caluwaerts, K. (2019). Hierarchical Rein-
forcement Learning for Quadruped Locomotion. 2019 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS).
doi:10.1109/iros40897.2019.8967913

[5] S. Gillen, M. Molnar, and K. Byl, Combining Deep Reinforcement
Learning And Local Control For The Acrobot Swing-up And Balance
Task. 2020.

[6] J. Gehring, G. Synnaeve, A. Krause, and N. Usunier, Hierarchical Skills
for Efficient Exploration. 2021.

[7] V. Makoviychuk et al., “Isaac Gym: High Performance GPU-Based
Physics Simulation For Robot Learning,” CoRR, vol. abs/2108.10470,
2021, [Online]. Available: https://arxiv.org/abs/2108.10470

[8] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, Learning to Walk in
Minutes Using Massively Parallel Deep Reinforcement Learning. 2021.

[9] NVIDIA-Omniverse, “Nvidia-Omniverse/Isaacgymenvs: Isaac gym re-
inforcement learning environments,” GitHub. [Online]. Available:
https://github.com/NVIDIA-Omniverse/IsaacGymEnvs. [Accessed: 07-
Dec-2021].

[10] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt and S. Kim, ”Dynamic
Locomotion in the MIT Cheetah 3 Through Convex Model-Predictive
Control,” 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2018, pp. 1-9, doi: 10.1109/IROS.2018.8594448.

[11] X. B. Peng, E. Coumans, T. Zhang, T.-W. E. Lee, J. Tan, and S. Levine,
“Learning Agile Robotic Locomotion Skills by Imitating Animals,” Jul.
2020. doi: 10.15607/RSS.2020.XVI.064.


