
ECE276A Project 2 Report

Yuchen Zhang1

Abstract– In this project, particle filter is em-
ployed to fuse on-board sensor information from
LIDAR, FOG, encoders, and stereo camera into
accurate localization and a partially colored map
with 0.2m resolution. The code is optimized to run
the SLAM portion in real time with 100 particles.

I INTRODUCTION

Autonomous driving is desirable to prevent traffic ac-
cident due to human error. Autonomous driving must
rely on accurate and robust localization.

Besides GPS, localization from the vehicle itself
with its own sensors provide a backup when GPS sig-
nal is unstable, which is a common issue in cities.
In this project, particle filter is employed to fuse
on-board sensor information from LIDAR, FOG, en-
coders, and stereo camera into accurate localization
and a partially colored map with 0.2m resolution.

II PROBLEM FORMULATION

With the assumption that the robot pose is identity
at time t = 0, build and maintain at any time instance
t

1. A probability distribution of the robot pose
based on all available information, i.e.,
p(xt|x0:t−1, u0:t−1, z0:t) where xt ∈ SE(2)

2. A occupancy grid map m ∈ RM×N with each el-
ement, γ(u,v) represent the probability of a map
cell (u, v) being occupied.

3. A colored grid map mc ∈ RM×N×3 with each
RGB pixel at (u, v) represent the color of map
cell (u, v).

Based on the following available information:

1. Encoder tick count of left and right wheels
EL, ER ∈ Z at time instance 0 : t− 1 and their
time stamps, diameter of both wheels DL, DR,
wheelbase wb

2. FOG measurement on orientation change ∆θ ∈
R at time instance 0 : t−1 and their time stamps

3. LIDAR measurement of distance ri ∈ R from
a fixed set of angles −5◦ ∼ +185◦ with fixed
interval of 0.66◦

4. Static frame transformations {F}T{L}, {F}T{S},

{V }T{F}

5. Image R(H×W×3) from left and right camera of
the stereo camera S up time instance t. Cam-
era intrinsic matrix K and static transformation
between the cameras represented by base line.

III TECHNICAL APPROACH

In this project, camera information is not used in the
SLAM part, i.e., texture mapping will not influence
SLAM part. Therefore, I separated SLAM and tex-
ture mapping: SLAM will produce a final map and
a history of best estimation of vehicle pose, texture
mapping then utilize those information to color the
final map.

I SLAM

The SLAM part consists three repeating steps: pre-
diction, update, and mapping. prediction is based on
motion model pf (xt|xt−1, ut−1) that update the belief
to the best estimation at the current time instance.
Update is based on observation model Ph(zt|xt,m)
that update the best estimation according to mea-
surement zt and forming a posterior. During map-
ping, a single pose is selected by the MAP method and
the map is updated according to the inverse observa-
tion model. To prevent particle depletion, resampling
is done before prediction step when needed.

I.1 Assumptions and State Representation

Assumptions

1. Markov assumption

p(xt|x0:t−1, u0:t−1,m) = p(xt|xt−1, ut−1,m)

p(zt|x0:t, u0:t−1,m) = p(zt|xt,m)

1

2. Map cell independence given current state

p(m|xt) =
∏

(u,v)

p(m(u,v)|xt)

Where mi represent the cell i in map m.

State Representation The probability distribu-
tion of robot state p(xt|x0:t−1, u0:t−1,m) is approxi-
mated by a discrete pmf represented by particles µi ∈
SE(2) and their probability, or weights, wi ∈ [0, 1].
The robot pose is the transformation from the FOG
frame to the Global frame.

At time instance t,

P(xt) =

{
wi , xt = µi

0 , otherwise

The map is represented as a 2D occupancy grid
with equal resolution in the x, y direction. the rela-
tion between index (u, v) and true location (x, y) is:

(u, v) = b(x, y)/(map res = 0.2m)c

The probability distribution of the map, accord-
ing to the assumptions, is represented as the product
of individual map cells. The probability of m(u,v) is
modeled as a bernoulli distribution. For simplicity
define +1 as occupied and −1 as empty.

P (m(u,v) = 1|x0:t, z0:t) = γ(u,v),t

P (m(u,v) = −1|x0:t, z0:t) = 1− γ(u,v),t

For implementation, the map state is saved as

log-odds form, i.e. λi = log
(
P (m(u,v)=1|xt)

P (m(u,v)=−1|xt)

)
=

log
(

γ(u,v)

1−γ(u,v)

)
. The probability can be recovered by

γ(u,v) = 1
1+exp(−λ(u,v))

I.2 Timestamp Management

The data given in this project does not have their
time stamp synchronized. In this project, control in-
put u is assumed to be constant unless updated by
the encoder or FOG information and time is dynam-
ically discredited. Period between two discrete time
instance is denoted as τ . The following prediction
and update steps are triggered by sensor inputs.

I.3 Prediction-Motion Model

Sensor information processing When a Encoder
or FOG information is available, the prediction step
is triggered. Firstly, the control input u = [v, ω] is
updated according to sensor input:

• Encoder information:

v :=
π ∗ (DL∆EL +DR∆ER)

2 ∗ CPR ∗∆ts enc

In which DL, DR are the diameter of the left,
right wheels, ∆EL,∆ER are the change in en-
coder ticks compared to last encoder informa-
tion received, ∆ts enc is the time between cur-
rent and last encoder information.

• FOG information:

ω :=
∆θ

∆ts fog

Where ∆θ is directly provided by the FOG and
∆ts fog is the time between current and last
FOG information.

Prediction For each particle,

µt = f(µt−1, τt(u+ w)), w ∼ N(0,W =

[
σ2
v 0

0 σ2
ω

]
)

xtyt
θt

 = f

xt−1

yt−1

θt−1

 , [dl
dθ

]
=

xt−1

yt−1

θt−1

+

cos(θt−1 + dθ
2)

sin(θt−1 + dθ
2)

dθ


And the weights are unchanged.

wt = wt−1

Where u = [v, ω] that consists the linear and angu-
lar velocity, w ∼ N(0,W) is the motion noise, and τ
is the time between current and last prediction. The
prediction step, although not preformed with fixed
time interval, always predict for same length of time
in total, in accordance with real time in the data.

I.4 Update-Observation Model

The update step is triggered whenever a lidar scan is
available.

Prediction Firstly, the predict step is called to pre-
dict to current time to obtain the best estimate of the
robot state distribution.

2

Frame Transformation Given raw laser measure-
ment zt = {(α1, r1), ..., (αk, rk)}, only those with
2m < rk < 75m are kept. For any robot state hy-
pothesis pose (x, y, θ), the following formula is used
to project the laser hit points to 2D and transform
them to 2D global frame.

pik = {G}T{F} · P · {F}T{L}


cos(αk)rk
sin(αk)rk

0
1


Where,

{G}T{F} =

cos(θ) − sin(θ) x
sin(θ) cos(θ) y

0 0 1


P =

1 0 0 0
0 1 0 0
0 0 0 1


{F}T{L} : see List of Static Variables

In other words, all 3D lidar hit points are first
transformed to and projected along the z direction
of the vehicle frame, then transformed to 2D global
frame according to the state hypothesis.

Correlation Computation For each particle car-
rying state hypothesis µi, it is shifted according to
a fixed grid in state space(SE2) to produce a set of

shifted copy of particles µ
(i)
l . Denote this perturba-

tion grid as ordered list G = {(dxl, dyl, dθl)}Ll=1

I tried different grids, the final grid is to change
the orientation by −0.005, 0,+0.005 rad and does not
shift the x,y position. Each particle have three shifted
copies.

Lidar observation zt is transformed according to
each shifted copy particle. Denote shifted hit points

for a shifted particle µ
(i)
l as {p(i)

l,k}Kk=1.
Denote the cell index in which set of laser hit

points {p(i)
l,k}Kk=1 lands as (uk, vk), correlation between

and map m is defined as:

corr({p(i)
l,k}

K
k=1,m) =

K∑
k=1

P(m(uk,vk) = +1)

=

K∑
k=1

1

1− exp(−λ(uk,vk))

Proposal Adjustment Based on the correlation
result for shifted copies of particle p(i), adjustment is
made to the proposal distribution to match the ob-
servation.

L(i) = arg max
l

corr({p(i)
l,k}

K
k=1,m)

∆µ(i) =
1

|L(i)|
∑
l∈L(i)

Gl

µ(i) := µ(i) + 0.05∆µ(i)

Correlation is calculated for each shifted copy and
the highest correlation is kept for the original particle.
Denote the highest correlation for all particles C(i).

C(i) = max
l

corr({p(i)
l,k}

K
k=1,m)

Update The observation model is defined as:

P(zt|xt = µ(i)) =
1

η
exp(C(i)/5)

η =
∑
i

exp(C(i)/5)

And the particle weight is updated according to:

w
(i)
t = P(xt = µ(i)|x0:t−1, u0:t−1, z0:t,m)

=
1

η
P(zt|xt = µ(i))w

(i)
t−1

∝ P(zt|xt = µ(i))w
(i)
t−1

where

η =
∑
i

P(zt|xt = µ(i))w
(i)
t−1

I.5 Mapping

After updating the weights, the state hypothesis with
largest weight is used to fuse the lidar scan into the
map.

Let denote the best particle and the transforma-
tion is represents as µ(i∗) ⇔ {G}T{F} and denote the

transformed laser hit points {p(i∗)
k }Kk=1. Compute the

lidar position plidar by

plidar =

[
1 0 0 0
0 1 0 0

]
{G}T{F}{F}T{L}


0
0
0
1


Transform all positions into map index, denote

the transformed index of {p(i∗)
k }Kk=1 as {(uk, vk)}Kk=1

, denote the transformed index of lidar position by
(ulidar, vlidar).

For each beam of laser (∀k = 1, ...,K), OpenCV’s
drawContours method is employed to find all map cell
that intersects the line originating from (ulidar, vlidar)

3

and ends at (uk, vk). These cells, except the laser
hit point, are ”observed free” and the last cell in the
beam, (uk, vk) is ”observed occupied”.

The map log-odds is updated accordingly with the
inverse observation model:

λ(u,v),t = log

(P(m(u,v) = 1|z0:t, x0:t)

P(m(u,v) = −1|z0:t, x0:t)

)
= log

[
ph(zt|m(u,v) = 1, xt)

ph(zt|m(u,v) = −1, xt)

]
+ λ(u,v),t−1

= log

[
ph(m(u,v) = 1|zt, xt)
ph(m(u,v) = −1|zt, xt)

]
︸ ︷︷ ︸

∆log odds

+ log

[P(m(u,v) = 1)

P(m(u,v) = −1)

]
︸ ︷︷ ︸

prior

+ λ(u,v),t−1

Assume P(m(u,v) = 1) = P(m(u,v) = −1)

= ∆log odds+ λ(u,v),t−1

Assume the lidar have true positive rate / false
positive rate of 8.0, we have:

∆log odds(u,v) =


− log(8) , (u, v)observed free

+ log(8) , (u, v)observed occupied

0 , otherwise

All observed map cells are updated accordingly.

I.6 Resampling

As the iteration goes, most weights are going to con-
centrate in few particles. Resampling prevents this
waste of computation power by redistribute the parti-
cles to represent the same distribution while particles
have more even weights.

Define number of effective particles as

Neff =
1∑
i w

2
i

A resampling occurs whenever Neff ≤ 0.2N , where
N = 1000 is the number of particles. Systematic re-
sampling is used to draw particles proportional to its
weight wi:

Algorithm 1 systematic resampling({µ(i), wi}Ni=1)

1: selection← []
2: draw u ∼ U(0, 1/N)
3: c← 0
4: j ← 0
5: for i = 1, ..., N do
6: th← u+ i−1

N
7: while c < th do
8: c← c+ wi
9: j ← j + 1

10: end while
11: selection ← [selection,(µ(j), 1/N)]
12: end for

I.7 Compromise for Optimization

For the sake of runtime, efficient implementation
in Python, and memory consideration, some com-
promise is made during implementation that differs
slightly from the above description:

1. Log-odds increment ∆log odds(u,v), ± log(8) is
approximated to ±2 in order to store the log-
odds map in int16 format.

2. Map cells observed by multiple laser beams are
updated only once. This compromise is made
in order to use the drawContours function of
OpenCV. This mainly affects cells close to the
origin of laser beam.

II Texture Mapping

After SLAM, a occupancy map and a history of best
estimation of robot pose is passed to this texture map-
ping section. Based on these two information and
images from the stereo camera, a colored map is cre-
ated. Texture mapping consists of mainly three steps:
Depth computation, Projection to color map, and oc-
cupancy masking.

Depth Computation From the left and right
stereo image, OpenCV’s StereoSGBM is used to per-
form block matching and the disparity d = uL−uR is
computed for matched blocks. The depth is compted
by D = subase line

d . Only pixels with depth ∈ [0, 70m]
is kept. Then, the projected 3D point in the Optical
frame(Denoted {S}) is computed as:

p =
su · base line

d
K−1

uLvL
1


4

Projection to color map Appending 1 to p to
transform is into homogeneous form p{S}. Transform
is to global frame by:

p{G} = {G}T{F}{V }T{S}p{S}

Where {G}T{V } is obtained from the history of
robot pose produced by SLAM.

Next, thresholding is applied to the Z axis and
only pixels with height −0.5m ∼ 1.5m are kept.

Then, their index on the color map is computed
and the colored map is updated to color of one of the
pixels that projected to that cell.

Occupancy Masking Finally, the color map is
masked by the occupancy map to produce the final
texture mapped map. Precisely, map cells with log-
odds < 0 are colored according to the color map. The
default color is white.

III List of Static Variables

Variable Value

{F}T{L}


0.0013 0.7961 0.6052 1.1699
1.0000 −0.0004 −0.0016 0.0223
−0.0010 0.6052 −0.7961 0.9842
0.0000 0.0000 0.0000 1.0000


{F}T{S}


−0.0068 −0.0153 0.9999 1.9774
−1.0000 0.0003 −0.0068 0.2824
−0.0002 −0.9999 −0.0153 0.8041
0.0000 0.0000 0.0000 1.0000


DL 0.622806m
DR 0.623479m

CPR 4096
σv 0.50 m/s
σω 0.04 rad/s

map res 0.2m
N 1000

base line 475.143600050775 mm

K

816.9038 0.5051 608.5073
0.0000 811.5680 263.4760
0.0000 0.0000 1.0000


su 816.9038

IV RESULTS

I Overview

Overall, the SLAM and Texture mapping successfully
mapped and colored available portion of the map.

* Videos of occupancy and texture mapping,
full resolution of both the occupancy and col-
ored map are included in the submission. Link
to videos: https://drive.google.com/drive/

folders/1bLR7G0qYp54NdamVC0O4dIIwr_xi_17Z,
Images are located at ”data output/images”

Figure 1: Vehicle Path (FOG)

Figure 2: Final occupancy map

5

Figure 3: Final textured map

II SLAM

The SLAM portion works well for most portion of
local mapping.

Figure 4: Local mapping well

Figure 5: Local mapping doubled

From the local mappings, I can clearly see that

the particle filter and the update step in function cor-
rectly. The noise assigned on the linear velocity have
std of 0.5m/s, The vehicle would drift far beyond sev-
eral grid cells if the update step were not functioning.

Still, there are evidence of mismatch after a large
loop.

Figure 6: Map mismatch (boxed)

This shows that particle filter and the use of one
global map is not appropriate for detecting and ad-
justing according to loop closure. For the sake of fu-
ture improvement, a alternative representation of the
map should be employed and a dedicated loop closure
module should be added.

6

III Texture Mapping

Figure 7: Local texture mapping

Globally, texture mapping works well. I can Identify
bright and shaded regions on the ground from the tex-
tured map, and the lanes. Locally, texture mapping is
not very accurate. From the above figure, we can see
that the lanes all bent inwards when it is close to the
camera. This is due to non-perfect block matching
between left and right stereo images. The lanes are
mostly a solid color without much variation, which is
hard to match accurately. Also, limited by the 1fps
framerate of the image data, most of the occupancy
map cannot be assigned a color.

IV Runtime

The above result is obtained with N = 1000 particles
with the perturbation grid making 3 copies of every
particle, using all available data. Under this setting,
the SLAM portion (not including visualization and
texture mapping) runs at ∼ 10% speed compared to
real time on my computer (Dell Precision 5530, i9
8950HK). To SLAM at realtime, only 80 ∼ 100 par-
ticles can be used.

7

