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Abstract—

per Blind Deconvolution using Convex Program-

In this project, I studied the pa-

ming with my focus being problem formulation
and convex relaxation. I validated the original pa-
per by recreating part of the results. My results
show the described deconvolution algorithm are
robust to noise and violation of the incoherence
assumption. However, breaking time-limitedness
of signal w may degrade its performance. Finally,
I compared the algorithm to non-blind deconvo-

lution.

I INTRODUCTION

In the paper Blind Deconvolution using Con-
vex Programming|[1], the authors aim to separate
two signals given their convolution.

In general, the solution to the blind decon-
volution problem is non-unique: denote the sig-
nal length by L, we have 2L unknowns but only
L equations. Therefore, the authors added as-
sumptions on the space which the two signals live
and proposed the conditions and the algorithm to

uniquely recover the two signals.

II PROBLEM FORMULATION

The problem is formulated as follows: Given
signals w,x of length L and their circular convo-

lution y defined as
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with the assumptions that

h e R¥

m e RV

w = Bh,

x = Cm,

where B € RE*E and C € REXN. Uniquely
recover w, X.

Here the author made an important assump-
tion: that both convolving signals live in a sub-
space of higher dimension vector space. Notice
that matrix B, C' are not part of recover goal, but
merely our tool for representing the dimension of

the signal.

IIT TECHNICAL APPROACH

I preliminaries
I.1 Circulant Matricies

I learned the following from wikipedia [5]:
Circulant matricies can be fully defined by one

vector ¢ € C" that have the form

Co Cpn—1 C1
&] Co C2
Ch—1 Cp—2 -+ Cp

which can be described as:

Ciy = cl(i — j)%n]

Therefore, when multiplying with a vector x:
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represents a circular convolution of vector ¢

and z.

Eigen The wikipedia states the following facts
about the eigenvalues and eigenvectors of the cir-

cular matrix:
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Where wy = exp (%) We can express the

eigenbasis matrix as:
Um,n - w(7)71,><n
With m,n starts from 0 to n — 1.

Also, the wikipedia claims the eigenvalues are:
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For k=0,--- ,n—1

We verify that Cv, = Agv,. All index are 0-
based.

We first prove the following fact for ¢, f both
periodic with period N.
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Proof:
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c[l%N] * f[(i — 1)%N]

Expanding all matrix multiplication and use

the result above yields:

Which verifies the validity of eigen vectors and
values.

Summarizing the results, in this section we
proved that circular convolution of two vectors ¢, x
can be represented as matrix multiplication Cx

and obtained a eigen-decomposition of the matrix

C.

IT Optimization Problem Formulation
II.1  Overview

The author first applies fourier transformation
to signals and subspaces involved in the problem
to express the operator circ(-) and form a opti-
mization problem from the heuristic about finding
the minimal energy signal h, m that generate the
observation y.

The formed optimization problem is non-

convex due to feasible set not a convex set. The

c[(i — j)%N]  f[j%N]author relaxed the problem by taking the dual of

primal problem twice. The final result is to not find

c[l%N] = f[(i — )%N] h, m directly, but relax the rank constraint on the

input to A, enlarge it from hm® to all X € RE*N

to satisfy the constraint, then minimize the nuclear

norm - which by [2] is a heuristic for low rank.



The final result shows the original problem ap-
proximated to nuclear norm minimization of ma-

~

trix X satisfying observation constraint A(X) = §.

I1.2 Fourier Transformation

The author first represented the convolution
problem as matrix multiplication using circular

matricies defined above.

y=mi(wxCy)+ -+ my(wxCy)
= [circ(Cy),- -+, circ(Cy)|[miw, -, myw]”

= [cire(Cq)B, - -+, cire(Cy)B|[mih, - - ,mNh}T

Notice that cire(C;B) is a constant that does
not depend on the signal variables h,m. More-
over, we can see that the observation is linear w.r.t.
the product of the signal variables mh. However,
the operator circ(-) is hard to analyze, and we
with to express it with known linear algebra terms.
Here, fourier decomposition of the circulant matrix
comes into play.

From the preliminaries section we can see all
circulant matrix have eigenvectors independent of
the input vector, and the eigenvalues are linear to
the input vector. We can use these elegant prop-

erties to represent circ(-) for further analysis.

circ(v) = F*AF

In which A = diag(A1,---,Ar) and the L-
point normalized discrete fourier transform matrix
is defined as (0-index)

Flw,l] = \/15 exp (_2m,u£l>

substitute all circ(-) operator with the above

form yields

y="Fy
= Flcirc(C1)B, - - - , circ(Cy)B]|[mih, - -- ,myh]”
= [A,(FB), - ,Ax(FB)][m:h, - ,myh]"
= [AlB, s ,ANB][mlh, s ,mNh]T

In which A; = v/ Ldiag(FC;) = V/Ldiag(C;)

Mleire(C)) = 3 (€, exp(~jkT)
= \/EiFkJ * (Ci);

Analyzing the [-th element of ¥ from the above

matrix multiplication revels:

Xo

this shows the fourier-transformed observation
input can be expressed as a linear combination
of the bilinear form of the recover target hm®.
The author defines this process as a linear opera-
tor A : REXN — CL. The problem becomes:

Find matrix X with rank 1 that satisfies §y =
A(X).



I1.3 Optimization Problem Formulation

We form the problem as finding the vectors
h,m with the minimal total energy ||h|% + ||m/|)3
subject to the above equality constraint. This

yields the primal optimization problem

min [0 + ml}3 st 90) = (", 4).¥1 e
v,m AH
1 . _
Although the objective function is a convex = ||h|3 + ||m|3 — i(mHAHh + A Am) + Re(y, \)
function, the feasible set need not be convex as it 7 1]
K 3 .
is a level set of bilinear form of the inputs. Due to = [hH mH] 150 ’ +Re(y, )

the constraint, the problem is not convex.

IIT Convex Relaxation
II1.1 1st Dual

According to paper, the above problem is non-
convex due to the feasible set is non-convex. We
can convexify it by solving its double Lagrange
dual as a approximate of it.

We first take the dual of the primal prob-
lem. Notice that we have L complex equality
constraint, which is in fact 2L equality constraints.

Define our multiplier as a;, b; € R”. For con-

venience define d; = g, — m” Af'h

L((h,m),a,b) = [|A]3 + [ml]3

+ Z(alRe(dl) + biIm(d;))

=1

Notice that for convenience we can define A\ =
a + bi. Therefore we can use operator Re(-) to

simplify our notation:

Re()\jdl) = Re {(al — blz)(Re(dl) + Im(dl)z)}
= alRe(dl) + blIm(dl)

Thus £((h,m),a,b)

= [[23 + llm]l3 + Re(d, A)

=1

L
= [[2l3 + llm]l3 — Re {Z A?‘mHAth} +Re(y, A)

L
= [|h]3 + [Iml3 — Re S m™> "N Ah b + Re(y, )

=1

We have the dual problem:

max Re(y, \) s.t.
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Notice that the above is equivalent to (7) in

the original paper, as by property of Schur com-
plement [4], as I > O:
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Scaling entry of A by half yields:

=0

—_—
max 2Re(y, A)

Ix A
s.t.lK
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We take the dual of this dual problem to yield

a approximate of the primal.

I11.2 2nd Dual

We wish to apply result (2.8) in the refer-
ence[3]. As the current linear maps are in complex
field, while (2.8) states the result about the real
field, we need to real-ify the linear maps defined.
The below proof to apply the result seems more

of a acrobatics in expressing complex operations in



real numbers and are quite boring, I leave it in the
appendix in section VI.

By work in [3] on the duality between opera-
tor norm and trace, the second dual of the primal
is:

y = AX)

min || X|. s.t.
X

As the objective function is convex and equal-
ity constraint is linear in X, the problem is now

convex.

IV  Theoretical Guarantees
IV.1 Overview

In the paper, the author gives theoretical
guarantee of recovery process of uniquely recov-
ering the rank-1 matrix X, = hm®.

The guarantee depends on assumptions on the
signal subspace B and signal w in the fourier do-
main.

To measure effectiveness, the author set the
unknown subspace C following isotropic distri-
bution, and gives a probabilistic guarantee of
uniquely recover Xy. Under noise, the author also
shows guarantee of recover Xy with noise with en-
ergy limited to scalar of the energy of noise in the

measurement with the same probability.

IV.2 Assumptions

Specifically, the author made the following assump-

tions to set up guarantee:

1. WLOG assumptions.
The author assumed columns of B are or-
thonormal. and |/h| = 1.

2. Time-limitedness of signal w

The author assumed the signal w is time-
limited to @ where K < @ < L. This re-

quires the last L — @ rows of B are zero.

3. Incoherence of basis B in fourier domain

The author states their guarantee is strong
when energy is evenly distributed in the rows
of B = FB. The extent of incoherence is

measured by quantity

L ~
:u’12naz = 7> max ||bl||§

K 1<i<rL

L . -
Mgnin = E 1I§nll§nL ||bl||g

with g2, = 1 showing maximum incoher-
ence.
4. Diffusion of signal w in fourier domain

The author measures diffusion of the signal

of interest w by
2 NAYD)
=1L h,b
pi, = L max |(h, by)|
5. Independence of columns of C' in fourier do-
main

columns of € are independent.

IV.3 Guarantee

Under a generic subspace C satisfying isotropic

normal distribution

Cl,n ~ N(Ov L_l)

The author shows that for o > 1, if:

Q > C, - Mlog(L)log(M)
& > logy(CLv/Nlog L)

Where M = max(u?,,, K, u7 N)Then there ex-
ists C! that depends only on « such that if

L
S a7
C!"log” L
then X, = hm* is the unique solution to the

nuclear norm minimization approximation with
probability 1 — O(L~**1).



The authors also proved the stability of their
method when the measurement y is affected by a
energy limiting noise:

Assuming all conditions from the noise-free
guarantee, let § = A(Xy) + 2 where 2 € R” is a
unknown noise vector with [|z]|2 < 4, then solving

the convex program

min [ Xl st [y - AX)[2 <0

with the same probability 1 — O(L™**!) we

can recover X with

Y )‘m T .
|X — Xollr < C’)\ — /min(K, N)J

i.e., the correct matrix plus a energy limited

noise linear with the input noise.

IV RESULTS

I Result Recreation and Analysis

I developed program in python to solve the

deconvolution problem by solving

min|[X[. st §=AX)

using the cvxpy package.

1.1 Phase dirgrams

Limited by computation resource, I scaled
down the dimensions to L = 40, and N, K varies
between 0 to L/2.

To generate the signals for the below diagram,
I first constructed the basis B, C according to the
paper: sparse refers to its columns are randomly
chosen from the identity matrix; short refers to its
column are the first K or N columns of the iden-
tity matrix; generic refers to its element follows iid

standard gaussian distribution.

With the constructed matrix, I constructed
vector h,m by sampling from iid gaussian distri-
bution. Then I computed w = Bh and z = C'm as

the testing signal, and y from w, x.

For each figure, I varied K, N from 1 to 20, re-
peated each dimension combination for 100 times

and recorded the success rate. Here are the results:
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Figure 1: sparse w, generic x
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Figure 2: short w, generic x
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Figure 3: short w, sparse x
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Figure 4: sparse w, sparse x

The figures for generic x accords with the pa-
per, but there are difference in the case where x
is sparse, for which the success rate drops signif-
icantly. I suspect not enlarging the observation
scale may be the issue, but I didn’t test my hy-

pothesis due to long computation time.

1.2 Stability

I conducted the stability test as follows: I fixed
the dimensions L = 80, N = 20, K = 10. Af-
ter generating a sparse w and generic x, and its

true observation y, I pertubated § = y + z where

z ~ N(0,0%I). T varied the value of o, computed
the input signal-to-noise ratio as |lyll2/| 2|2, and
recorded the relative error of recovered X to the
ground truth Am?. Each data point is the aver-
aged result of 100 tests.

Relative Error v.s. SNR with (L,N,K) = (80, 20, 10)
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Figure 5: stability of solution under noise

The above result accords with the original pa-
per, showing stability of the recovery. More, we
observe a linear relation on the log-log plot with
slope approximately —1. This shows the relative
noise is approximately in inverse relation with the

input signal-noise ratio.

This observation aligned with the author’s
proof about the stability theorem that the error

in || X/ is less then constant times ¢.

I then recreated the oversampling experiment.
I fixed N = 20, K = 10 in this experiment and var-
ied L. I adjusted the value of o such that the in-
put signal-to-noise ratio is about 20dB. Each data
point is the averaged (averaged in dB and converted
bask) result of 100 tests.



Relative Error v.s. oversampling rate @ SNR = 20dB
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Figure 6: sparse w, sparse x

The result shows relative error decreases with

increasing L.

II Comparision to non-blind deconvolu-

tion

In this section, we compare the performance
difference with/without knowledge of the signal w.
With the knowledge of w, the primal problem be-
comes convex in the constraint and can be directly
solved efficiently. In the below experiments, we

solved the unknown m by solving:

min [|mlly  s.t. §=A(hm*)
m
and evaluate the relative error using the same
method as before:

(i —m) " g /| P ||

II.1 probability of success

The phase diagram is trivial here as we have
the same number of unknowns as the constraints

given signal w. A solution is always guaranteed.

I1.2 Stability

I repeated the stability experiments as in the
blind deconvolution case with the same parame-
ters. The only difference is that in the presence
of noise, the optimization problem may not always
be feasible with the § as before. My solution to
this problem is to double § and retry if problem is

infeasible.

Relative Error v.s. SNR with (L,N,K) = (80, 20, 10)
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Figure 7: sparse w, sparse x
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Figure 8: sparse w, sparse x
As expected, the non-blind deconvolution
yields a lower relative error on all dimensions.

From the first figure we can see the non-blind de-



convolution result is also inversely proportionally

to input signal-to-noise ratio.

IIT Evaluation of theoretical guarantees

This section investigates the robustness of the
algorithm with respect to the conditions required

by the theoretical guarantee section.

In the below experiments, I will generate data
of fixed size L = 40, N = 10, K = 10 and record
the probability of successful deconvoluton of 100

repeated tries.

III.1 Incoherence of B

I generated B of different ranges of 4, and
evaluated their success rate on a generic C' matrix
with dimensions L = 40, N = 10, K = 10. I split
the incoherence range linearly into 20 bins, drew
20 matrix B from the bin, and repeat tested each

for 20 times.

I generated matrix B of different incoherence
by combining 3 types of basis with random ratio,

then normalize the energy. The three types are:

1. Large incoherence: random columns of the

identity matrix

2. Medium incoherence: matrix with element

sampled from standard gaussian

3. Small incoherence: matrix filled with 1.

success rate v.s. \mu max

0.64

0.62

success rate
o
=
o

0.58

0.56

T T T T T T T T
5 10 15 20 25 30 35 40
\mu max

Figure 9: effect of incoherence

The result shows that success rate of the re-
covery is not influenced significantly by the inco-

herence of B.

I11.2 Time-limitedness of w

To investigate the effect of time-limitedness,
I modified the experiment for figure2. Instead of
setting entries after K as 0, I set them to a ran-
dom value, breaking time-limitedness of w. The

comparision between phase diagrams are:

Figure 10: time limited Figure 11: not time lim-
ited

We can see the phase diagram of non-time-
limited signal is slightly worse than the time lim-
ited version. Time-limitedness, by itself, can de-

grade the performance of the algorithm.



V Conclusion

In conclusion, in this project I studied the pa-
per Blind Deconvolution using Convexr Program-
ming and re-created some of its results on a smaller
scale. Overall, my reproduction results accords
with the original paper. Comparision with non-
blind deconvolution shows blind version produces
more noise and are less sample efficient. Tests on
violating theoretical assumptions shows that the
algorithm is robust w.r.t. incoherence of B, while
breaking time-limitedness can degrade its perfor-

mance.

For myself, I learned that circulant convolu-
tion have a connection to discrete fourier trans-
form via eigen-decomposition, and how the initial
problem is relaxed twice into its ”convex approxi-

mation” and efficiently solved.

10

References

1]

Ali Ahmed, Benjamin Recht, and Justin
Romberg. Blind Deconvolution using Convex
Programming. 2012. eprint: arXiv : 1211 .

5608.

Maryam Fazel. PhD thesis. 2002. URL: https:
/ / faculty . washington . edu / mfazel /

thesis-final.pdf.

Benjamin Recht, Maryam Fazel, and Pablo
A. Parrilo. Guaranteed minimum-rank solu-
tions of linear matriz equations via nuclear
norm minimaization. June 2007. URL: https:
//arxiv.org/abs/0706.4138.

Schur complement. Sept. 2021. URL: https:
/ / en .

complement.

wikipedia . org / wiki / Schur _

2022. URL:
org / wiki /

Wikipedia. Circulant matriz.
https : / / en .

Circulant_matrix (visited on 05/24/2022).

wikipedia .



VI APPENDIX

I Proof of second dual

Separating real and imaginary components,

2Re(§, \) = [Re( )T Im(y) }

Define linear map F : RGK)I*N _, R2E

Re(A(X, +iX0)| _ (X,
Im(AX, +iX,)|  ~ \|X,
where X, X; € REXN

We wish to show that V : R?L — REXN x REXN defined as

Re(y)
Im(y)

<y

Re(A)
m(A)

is the adjoint linear operator of F.
Proof:

< [vl ,F ([Xl ) > = v Re(A(X, +iX;)) + vl Tm(A(X, +iX;))

(%

i

= Re (A(X, +iX;), v, + iv;)

(A(
Z:D’K:1>:”({Rew war] ]

A(vp,v:))" X)) + tr(Im(A (UT,Ul)) i)

= Re ( (A(vr, )7 X,) )—Im(tr (0, 0 )HX)>
:Re<tr/~lvr,v) X,) )—f—Re(tr (v, v;) " ))
:Re{tr( (v, v3) 7 (X, —|—ZX))}
:Re{i vy + v tr [A(X, +2X)]}
:Re{ivr—sz A(X, +ZX)}

1=1

= Re(A(X, + iX;),v, + iv;)
=V =F"

Finally we have ||V|| = ||A]| As
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V|| = tr(Re(A)"Re(A) 4 Im(A) Tm(A)) = tr(A# A) = || A||

when both operators are given A as input. Strictly speaking, there exists a norm-preserving bijection

between the inputs of both sides.
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